ORGANIC COMPONENTS IN BOTTOM SEDIMENTS FROM THE LOWER YENISEI, THE GYDA BAY, AND THE KARA SEA SHELF

Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya str., Irkutsk, 664033, Russia; khodzher@lin.irk.ru
*I Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, 17, Akad. Lavrentieva, Novosibirsk, 630090, Russia; pvs7zeitlos@gmail.com

Samples of bottom sediments from the Yenisei lower reaches, the Gyda Bay, and the Kara Sea shelf have been analyzed for organic carbon and nitrogen. The contents of both organic carbon and organic nitrogen depend on the grain size of sediments and are controlled by deposition conditions (sedimentation rates, provenance, etc.). The carbon-to-nitrogen ratios (C/N), as well as the carbon isotope composition (δ^{13}C), indicate the terrigenous component in organic matter to decrease off the shore. The vertical patterns of the same parameters have implications for the steadiness of sedimentation.

The contents and changes of organic components in bottom sediments of the Arctic seas can provide clues to many issues, such as features of the organic carbon cycle in a given area, high-latitude lithogeny, paleogeography and past climate change, the contribution of the Arctic seas into the current methane cycle, etc. [Romankevich and Vetrov, 2001; Levitan et al., 2007; Shahova et al., 2009]. Although many publications on the subject have been available, any new information from the hardly accessible Arctic terrains is of special interest.

Below we report data on bottom sediment samples collected in August through October 2009 from the lower reaches of the Yenisei, the Gyda Bay, and the Kara Sea shelf. See Fig. 1 for the location map of sampling sites and main results. Sixty samples, in-
including six cores from 18.5 to 75 cm long and ten samples from the bottom surface, were analyzed for the concentrations of organic carbon (C_{org}) and nitrogen (N_{org}) and for δ¹³C/¹²C ratios (δ¹³C) relative to the VPDB (Vienna Pee Dee Belemnite) standard. The carbon and nitrogen contents were determined using gas chromatography with a catarometer (elemental analysis, Euro Vector Acetanilide) to an accuracy at least 0.01 % and 0.02 % (standard deviations for N_{org} and C_{org}, respectively); δ¹³C was measured by isotope-ratio mass spectrometry, to a precision no worse than 0.12 ‰ (measured on the Aldrich citric acid standard). The results are reported as means of two runs for each sample.

The nitrogen and carbon concentrations vary from 0.015 to 0.221 % (N_{org}) and 0.14 to 2.60 % (C_{org}), the range spanning more than an order of magnitude. The C_{org} range approaches that in marine sediments from the southwestern Kara Sea (0.13 to 2.10 %) [Belyaev et al., 2010]. The minimum concentrations are from the bottom surface at a freshwater station (site 24) and the maximum ones are from marine sediments at site 10 (Fig. 1). Bottom sediments at offshore sites (7, 9, 10, 22) consist of pelitic material and, correspondingly, are notably richer in both elements relative to freshwater sediment sites. For instance, N_{org} and C_{org} in the core of site 9 are more than twice that in the Gyda Bay cores (Fig. 2). The only offshore site with low N_{org} and C_{org} is station 20 near Sibiryakov Island in rather sandy sediments. The sediments at freshwater site 24 which contain the lowest amounts of N_{org} and C_{org} likewise differ in a high sand percentage. These results agree with published evidence of rather high C_{org} in pelitic sediments from the relatively deepwater part of the Yenisei Gulf (up to 1.85 % [Lein et al., 1996]) and from the depocenter of the tidal mixing front of river-borne and transformed marine waters (up to 2.5–3.0 % [Kodina et al., 2009]).

The ratio of organic carbon to organic nitrogen (C/N) has implications for the origin of organic matter (OM) in bottom sediments. The C/N ratios we
obtained vary from 8.9 at site 24 to 13.5 at site 26, both stations being located within the same Yenisei profile. The difference may be due to sediment provenance. Namely, sediments from site 26, which is located at the swampy Gyda Peninsula and, especially, on the shallower left bank of the Yenisei where most of river-borne particulate matter is deposited, contain a greater percentage of terrigenous OM. The high terrigenous input to sediments at station 26 is consistent also with the carbon isotope composition (see below). The C/N ratios at site 24 are low, possibly because both organic components (N\text{org} and C\text{org}) are very low there (see above). At the other stations, this ratio is markedly larger (10.0 to 11.5, see Figs. 1, 2) indicating quite a high percentage of terrigenous organic matter. High C/N ratios (12.3) were measured at site 13 where organic input is with the relatively large Gyda and Yuribei rivers and waters that drain the swampy land nearby.

The C/N ratio commonly increases with depth due to leading decomposition of nitrogen-bearing organic compounds. In the cores we analyzed, the downward increasing pattern is restricted to offshore site 9, where a steady sedimentation is supposed. C\text{org} and N\text{org} in the core from site 9 decrease with depth while the C/N ratio grows slowly (Fig. 2). The vertical patterns in all other cores are rather chaotic and record random changes in sedimentation conditions. In the Gyda Bay these changes may be associated with river-borne and paludal terrigenous fluxes, while at offshore station 20 the terrigenous input may be from neighbor Sibiryakov island.

The maximum and minimum \(\delta^{13}C\) values were measured in bottom surface samples. They range from \(-28.5\ \%\) in the lower Yenisei (site 26) to \(-26.2\ \%\) in the Kara shelf (site 20) (Fig. 2) following the typical seaward \(\delta^{13}C\) gradient. Low \(\delta^{13}C\) are known to characterize terrestrial organic matter, but isotope data from high-latitude regions cannot provide unambiguous evidence of OM genesis [Kodina et al., 2009]. A similar \(\delta^{13}C\) of \(-28.7\ \%\) was reported from the Ob estuary (Kara Sea) [Kodina et al., 2001]. The seaward trend of progressively higher \(\delta^{13}C\) in the zone of Yenisei influence (from \(-27.9\ \%\) \(\delta^{13}C\) in the estuary fresh water to \(-22.4\ \%\) offshore [Kodina et al., 2009]) may result from metabolic activity of heterotrophic microorganisms in the stratified water column and from a notable input of secondary biological production. The vertical profile of \(\delta^{13}C\) is quite uniform (Fig. 2).

Thus, the contents of organic nitrogen and carbon in the lower Yenisei, Gyda Bay, and Kara shelf sediments depend on the sediment provenance. The C/N ratios, as well as the carbon isotope composition, record a seaward decrease in the terrigenous input to organic matter. The vertical patterns of the same parameters indicate steady sedimentation to be restricted to a single offshore site in the Kara Sea. Deposition in the Gyda Bay occurred at changeable conditions, possibly, associated with riverine and paludal sediment input.
We wish to thank A.A. Fedotov and I.V. Tomberg from the Limnological Institute, Irkutsk for the sampling work. The study was carried out as part of Project 20.7 (“Integrate studies of the Arctic shelf. Permafrost and Arctic shelf in a changing climate; stability of ecosystems and gas hydrates; organic matter disposal”) of Program 20 of the Presidium of the Russian Academy of Sciences.

References

Received
13 February 2011